首页> 外文OA文献 >Coupled Gaussian processes for pose-invariant facial expression recognition
【2h】

Coupled Gaussian processes for pose-invariant facial expression recognition

机译:耦合高斯过程用于姿势不变的面部表情识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a method for head-pose invariant facial expression recognition that is based on a set of characteristic facial points. To achieve head-pose invariance, we propose the Coupled Scaled Gaussian Process Regression (CSGPR) model for head-pose normalization. In this model, we first learn independently the mappings between the facial points in each pair of (discrete) nonfrontal poses and the frontal pose, and then perform their coupling in order to capture dependences between them. During inference, the outputs of the coupled functions from different poses are combined using a gating function, devised based on the head-pose estimation for the query points. The proposed model outperforms state-of-the-art regression-based approaches to head-pose normalization, 2D and 3D Point Distribution Models (PDMs), and Active Appearance Models (AAMs), especially in cases of unknown poses and imbalanced training data. To the best of our knowledge, the proposed method is the first one that is able to deal with expressive faces in the range from -45° to +45° pan rotation and -30° to +30° tilt rotation, and with continuous changes in head pose, despite the fact that training was conducted on a small set of discrete poses. We evaluate the proposed method on synthetic and real images depicting acted and spontaneously displayed facial expressions.
机译:我们提出了一种基于一组特征性面部特征的头姿势不变面部表情识别方法。为了实现头枕不变性,我们提出了用于头枕标准化的耦合比例缩放高斯过程回归(CSGPR)模型。在此模型中,我们首先独立学习每对(离散)非正面姿势与正面姿势中的面部点之间的映射,然后执行它们的耦合以捕获它们之间的依赖性。在推理过程中,使用基于基于查询点的头枕估计而设计的门控功能组合来自不同姿势的耦合函数的输出。拟议的模型优于基于头枕归一化,2D和3D点分布模型(PDM)和主动外观模型(AAM)的基于回归的最新方法,尤其是在未知姿势和不平衡训练数据的情况下。据我们所知,所提出的方法是第一个能够处理-45°至+ 45°平移旋转和-30°至+ 30°倾斜旋转范围内的表情面并连续变化的方法尽管实际上训练是针对一小组离散的姿势进行的,但仍采取头部姿势训练。我们在合成图像和真实图像上评估提出的方法,这些图像描述了行为和自发显示的面部表情。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号